Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How salicylic acid takes transcriptional control over jasmonic acid signaling.

Identifieur interne : 000544 ( Main/Exploration ); précédent : 000543; suivant : 000545

How salicylic acid takes transcriptional control over jasmonic acid signaling.

Auteurs : Lotte Caarls [Pays-Bas] ; Corné M J. Pieterse [Pays-Bas] ; Saskia C M. Van Wees [Pays-Bas]

Source :

RBID : pubmed:25859250

Abstract

Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well.

DOI: 10.3389/fpls.2015.00170
PubMed: 25859250
PubMed Central: PMC4373269


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How salicylic acid takes transcriptional control over jasmonic acid signaling.</title>
<author>
<name sortKey="Caarls, Lotte" sort="Caarls, Lotte" uniqKey="Caarls L" first="Lotte" last="Caarls">Lotte Caarls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pieterse, Corne M J" sort="Pieterse, Corne M J" uniqKey="Pieterse C" first="Corné M J" last="Pieterse">Corné M J. Pieterse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Wees, Saskia C M" sort="Van Wees, Saskia C M" uniqKey="Van Wees S" first="Saskia C M" last="Van Wees">Saskia C M. Van Wees</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25859250</idno>
<idno type="pmid">25859250</idno>
<idno type="doi">10.3389/fpls.2015.00170</idno>
<idno type="pmc">PMC4373269</idno>
<idno type="wicri:Area/Main/Corpus">000539</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000539</idno>
<idno type="wicri:Area/Main/Curation">000539</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000539</idno>
<idno type="wicri:Area/Main/Exploration">000539</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How salicylic acid takes transcriptional control over jasmonic acid signaling.</title>
<author>
<name sortKey="Caarls, Lotte" sort="Caarls, Lotte" uniqKey="Caarls L" first="Lotte" last="Caarls">Lotte Caarls</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pieterse, Corne M J" sort="Pieterse, Corne M J" uniqKey="Pieterse C" first="Corné M J" last="Pieterse">Corné M J. Pieterse</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Wees, Saskia C M" sort="Van Wees, Saskia C M" uniqKey="Van Wees S" first="Saskia C M" last="Van Wees">Saskia C M. Van Wees</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</nlm:affiliation>
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht</wicri:regionArea>
<wicri:noRegion>Utrecht University Utrecht</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25859250</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>How salicylic acid takes transcriptional control over jasmonic acid signaling.</ArticleTitle>
<Pagination>
<MedlinePgn>170</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00170</ELocationID>
<Abstract>
<AbstractText>Transcriptional regulation is a central process in plant immunity. The induction or repression of defense genes is orchestrated by signaling networks that are directed by plant hormones of which salicylic acid (SA) and jasmonic acid (JA) are the major players. Extensive cross-communication between the hormone signaling pathways allows for fine tuning of transcriptional programs, determining resistance to invaders and trade-offs with plant development. Here, we give an overview of how SA can control transcriptional reprogramming of JA-induced genes in Arabidopsis thaliana. SA can influence activity and/or localization of transcriptional regulators by post-translational modifications of transcription factors and co-regulators. SA-induced redox changes, mediated by thioredoxins and glutaredoxins, modify transcriptional regulators that are involved in suppression of JA-dependent genes, such as NPR1 and TGA transcription factors, which affects their localization or DNA binding activity. Furthermore, SA can mediate sequestering of JA-responsive transcription factors away from their target genes by stalling them in the cytosol or in complexes with repressor proteins in the nucleus. SA also affects JA-induced transcription by inducing degradation of transcription factors with an activating role in JA signaling, as was shown for the ERF transcription factor ORA59. Additionally, SA can induce negative regulators, among which WRKY transcription factors, that can directly or indirectly inhibit JA-responsive gene expression. Finally, at the DNA level, modification of histones by SA-dependent factors can result in repression of JA-responsive genes. These diverse and complex regulatory mechanisms affect important signaling hubs in the integration of hormone signaling networks. Some pathogens have evolved effectors that highjack hormone crosstalk mechanisms for their own good, which are described in this review as well. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Caarls</LastName>
<ForeName>Lotte</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pieterse</LastName>
<ForeName>Corné M J</ForeName>
<Initials>CM</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Van Wees</LastName>
<ForeName>Saskia C M</ForeName>
<Initials>SC</Initials>
<AffiliationInfo>
<Affiliation>Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University Utrecht, Netherlands.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">hormone crosstalk</Keyword>
<Keyword MajorTopicYN="N">plant immunity</Keyword>
<Keyword MajorTopicYN="N">post-translational modifications</Keyword>
<Keyword MajorTopicYN="N">regulation of gene expression</Keyword>
<Keyword MajorTopicYN="N">transcription factors</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25859250</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00170</ArticleId>
<ArticleId IdType="pmc">PMC4373269</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2000 Dec 22;103(7):1111-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11163186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Mar;25(5):563-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11309146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9448-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11481500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Mar;15(3):760-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Sep;15(9):2181-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12953119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2647-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14576289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2003 Nov;16(11):1022-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14601670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):319-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1938-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Apr;17(4):1196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15749761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Apr;18(4):363-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15828688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Oct;139(2):949-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16183832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):411-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2006 Jan;8(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16435264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1310-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 May;46(3):477-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16623907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Aug;47(4):532-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16813576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Nov;2(11):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17096590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):3289-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17114354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3670-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2007 Mar;5(2):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17309686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Mar;19(3):805-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Apr;50(1):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Jun;48(6):833-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Aug;10(4):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17644023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Oct 23;17(20):1784-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17919906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Mar;279(3):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1358-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18539774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):952-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18635760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Aug 20;27(16):2214-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 May;50(5):630-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18713432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2357-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18776063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1747-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18842596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Nov;20(11):3122-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18984675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2009 Jan 1;23(1):80-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Apr;149(4):1797-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19176718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 May 12;106(19):8067-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008;1(2):143-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):200-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19832945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 Feb;23(2):187-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jun;22(6):1909-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20543028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2894-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20716698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1423-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20839007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1805-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20935179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):464-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21030507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2010 Dec 14;19(6):884-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21145503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Mar;75(4-5):321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21246258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2011 Apr;21(2):225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21330129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1639-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2011;49:317-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21663438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Oct;14(5):519-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21704551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12539-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Nov;68(3):507-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21756272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Oct;16(10):524-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21782492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Aug;23(8):2809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21841124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):844-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22147520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2012 Jul;5(4):831-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2012 Jan 25;12(2):89-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22273771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Apr;185-186:288-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22325892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jul;71(1):135-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22381007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Mar 15;11(3):253-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22423965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jul;195(1):217-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22494141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 8;109(19):E1192-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22529386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2012 Nov;110(7):1423-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22543179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 May 16;486(7402):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22699612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2012 Jun 14;11(6):587-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22704619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2012 Jun 28;1(6):639-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22813739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Sep;160(1):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Sep 15;446(3):333-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22928493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2013 Feb;26(2):151-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):4294-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Feb;73(3):483-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23067202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Nov;63(18):6371-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23095997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2013 May;6(3):686-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23142764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2013;64:839-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):744-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23435661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2013 Apr;18(4):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23481128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Mar;25(3):1126-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2013 Jun;111(6):1021-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23558912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 05;4:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2013;51:245-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23663002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 May;25(5):1641-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23673982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 May 23;50(4):504-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23706819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Sep;163(1):291-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(7):e1003653</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2013 Dec;213:79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24157210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2013 Oct;9(10):e1003715</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1373-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2013 Dec;11(12):e1001732</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24339748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Dec 30;4:539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24416038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 23;9(1):e86182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24465948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2014 Feb 18;12(2):e1001792</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24558350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 May;7(5):764-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24658416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 May 13;26(5):1967-1980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24824488</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Jun 10;26(6):2285-2309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Jul 2;165(4):1671-1683</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24989234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Oct;21:112-119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25064075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2014 Sep 17;33(18):1987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25104823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Oct;204(2):261-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25236167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol Report. 2015;33:624-637</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26696694</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pays-Bas</li>
</country>
</list>
<tree>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Caarls, Lotte" sort="Caarls, Lotte" uniqKey="Caarls L" first="Lotte" last="Caarls">Lotte Caarls</name>
</noRegion>
<name sortKey="Pieterse, Corne M J" sort="Pieterse, Corne M J" uniqKey="Pieterse C" first="Corné M J" last="Pieterse">Corné M J. Pieterse</name>
<name sortKey="Van Wees, Saskia C M" sort="Van Wees, Saskia C M" uniqKey="Van Wees S" first="Saskia C M" last="Van Wees">Saskia C M. Van Wees</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000544 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000544 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25859250
   |texte=   How salicylic acid takes transcriptional control over jasmonic acid signaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25859250" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020